INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI
                   भारतीय प्रौद्योगिकी संस्थान तिरुपति

INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI
भारतीय प्रौद्योगिकी संस्थान तिरुपति
Policies      RTI      SC/ST/OBC Liaison Officers/Cell               

ELECTRICAL ENGINEERING


Dr. Vijaya Kumar Gurugubelli

Assistant Professor

Areas of Interest

  • Analytical and Compact Modeling
  • Power Semiconductor Devices
  • Theoretical and Computational Nanoelectronics
  • Boundary Value Problems
  • Circuit Design with Novel Materials and Devices
  • Sensors

Education

  • Ph.D, Indian Institute of Technology Madras (2017), India
  • B.Tech and M.Tech (under Dual Degree programme) in Electrical Engineering from IIT Madras (2009), India

Latest Publications

  • V. K. GURUGUBELLI, and S. Karmalkar, “An Integral Equation Approach to Model the Drastic Change in Depletion Width From Bulk to Nanoscale Junctions,” IEEE Trans. Electron Devices, 65(4), pp. 1493-1501, 2018.
  • V. K. GURUGUBELLI and S. Karmalkar, “Effective Medium Theory Based Analytical Models for the Potential and Field Distributions in Arrays of Nanoscale Junctions,” J. Appl. Phys., 122, p. 024502, 2017.
  • Shubham Jain, V. K. GURUGUBELLI, and S. Karmalkar, “An Analytical Model of the Frequency Dependent 3-D Current Spreading in Forward Biased Shallow Rectangular P-N Junctions,” IEEE Trans. Electron Devices, 64(2), pp. 507-514, 2017.
  • V. K. GURUGUBELLI and S. Karmalkar, “Effective Medium Theory of the Space-Charge Region Electrostatics of Arrays of Nanoscale Junctions,” J. Appl. Phys., 119(2), p. 024507, 2016.
  • V. K. GURUGUBELLI and S. Karmalkar, “Analytical Theory of the Space-Charge Region of Lateral p-n Junctions in Nanofilms,” J. Appl. Phys., 118(3), p. 034503, 2015.
  • V. K. GURUGUBELLI, R. C. Thomas, and S. Karmalkar, “An Analytical Model of the DC and Frequency-Dependent 2-D and 3-D Current Spreading in Forward-Biased Shallow p-n Junctions,” IEEE Trans. Electron Devices, 62(2), pp. 471-477, 2015.
  • V. K. GURUGUBELLI and S. Karmalkar, “A unified analytical model of the junction electrostatics in nanowire and nanotube arrays,” Appl. Phys. Lett., 104(20), p. 203502, 2014.